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ABSTRACT: This paper presents an investigation into the performance evaluation of Finite Difference
(FD) method in modeling a rectangular thin plate structure. In case of complex and big construction
systems subjected to the arbitrary loads, including a complex boundary conditions, solving of differential
equations by analytical methods is almost impossible. Then the solution is application of numerical
methods. The differential equations are discretized by means of the finite difference method which are
used to determine the in-plane stress functions of plates and reduced to several sets of linear algebraic
simultaneous equations. In the end, A problems is solved which illustrate the potential of the method for
predicting the finite stress, deflection and farther directions of investigations are given. Finally, it was
found that the finite difference method selection is desired to model thin plates structure.
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INTRODUCTION

Thin plates are structural elements that their thickness is smaller than its two dimensions. Among practical
examples to describe the dimensions of these plates are roof, building windows, flat part of a table, manhole thin
covering and panels. plates are divided into two categories: thin plates with large deflections and thick plates (Boot,
1988 and Krysko, 2011). In thin plates, deflections and deformation of structural elements are usually considered
and for ease of work, in structural plates, their deflections are studied under loading conditions.

Linear theory is used in describing the lateral displacements or small deformation under loading and this method is
used in the analysis of thin plates under lateral loads. If plates’ deflections are large, this method cannot be used
(Kaiser, 1936).

If plates’ deflections are large, deflection of middle of the plate is increased then, the linear method cannot be
applied for determining the deflection of these plates. These errors are large and obtained linear solutions including
displacement and stress are contrary to experimental observations.

Thus the non-linear theory for plates is developed by Von Karman and was used in the analysis of thin plates.
Linear difference equations in plates were presented for the first time in 1910 by Von Karman then Kirchhoff used
these equations for large deformations.

He also studied plates’ internal forces with external deformations and stated simultaneously their relationship
with each other. The simplest application of this method is in thin rectangular plates. Then In 1936, Kaser solved a
uniformly laterally loaded, simply supported, square plate problem (Kan, 1967 and Kim, 2002).

He used finite difference method and supported solutions to solve this problem and analyzing experimental
results in analyzing this plate. In recent years, studies were done in connection with finite element of flexure
problems such as analysis of large displacements, plate vibration, problems related to stress, etc (Wang and Wu,
2011; Zhang, 2010).

An approximate method for the analysis of plates using the finite difference method were presented by Bhaumik
and Hanley for uniformly loaded rectangular plate. However, in this study they assumed that the behavior of each
point of the mesh in the thickness is fully elastic or fully plastic.

This hypothesis is to facilitate the review of plate bending. Although for some structural materials the
relationship between anchor and bending using two lines is not correct (Mochnacki, 2010). According what is
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mentioned, enough studies have not been done in examining the application of finite difference method in modeling
and simulating thin plates, Therefore, in this study, the finite difference method was evaluated using a computer
program for the analysis of stress and deformation of rectangular thin plate under supported solutions and
specified supports.

MATERIALS AND METHODS

Methodologies using FDM

A number of analytical approaches were proposed by different researchers to solve the plate differential
equation of motion. FE (Finite Element) and FD methods are known to be the most widely used numerical
procedures to solve the mentioned differential equation. An advantageous of FE method is that it is very suitable
for practical engineering problems of complex geometries. However, the computational complexity involved in this
method constitutes the main disadvantage of this technique, especially in realtime application.

On the other hand, the FD method is relatively easy to program, fast enough to analyze and also seems to be
more convenient for uniform structures such as plate system. The main serious drawback of FD method is that it is
not suitable for problems with awkward and irregular geometries (Wu et al, 2010).

Furthermore, since it is difficult to vary the size of the difference cell in particular regions, it is not suitable for
problems with rapidly changing variables such as stress concentration problems. In any case, because of the
geometry uniformity of the thin plates, FD method seems to be more applicable and faster to calculate especially
for the case of realtime design of an active vibration controller.

In FD method, the entire solution domain is divided into a grid of cells. Then, the derivatives in the governing
partial deferential equations are written in terms of difference equations. Therefore, the FD is applied to each
interior point so that the displacement of each node is related to the values at the other nodes in the grid connected
to it. Considering the boundary conditions of the problem, a unique solution can be obtained for the overall system
(Chakraborty, 2011).

Initial equations
We know from the equations of elasticity theory:
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Flexural rigidity (D) is defined as

D= Et3
T 12(1 - v?)

Failure Thoeries

If all structures where loaded in only one direction, it would be easy to predict failure. All that would be needed
was a single uniaxial test to find the yield stress and ultimate stress levels. If it is a brittle material, then the ultimate
stress will determine failure. For ductile material, failure is assumed to be when the material starts to yield and
permanently deform.

However, when a structure has multiple stresses at a given local (0x, Oy and Tx for 2D as discussed in Stresses
at a Point section), then the interaction between those stresses may effect the final failure. This section presents
distortion energy that can be used for different types of materials to help predict failure when multiple stresses are
applied.

For simplification, all failure theories are based on principal stresses (01, 02) which can be determined from any
(ox, Oy and Tx) stress state. This removes the shear stress terms since the shear stress is zero at the principal
directions. Using principal stresses does not change the results from the failure theories (Zhang, 2010).

Maximum distortion energy theory

The maximum distortion energy theory, also known as the von Mises theory, was proposed by M. T. Huber in
1904 and further developed by R. von Mises (1913) and H. Hencky (1925). In this theory, failure by yielding occurs
when, at any point in the body, the distortion energy per unit volume in a state of combined stress becomes equal
to that associated with yielding in a simple tension test.

The distortion energy theory says that failure occurs due to distortion of a part, not due to volumetric changes
in the part (distortion causes shearing, but volumetric changes due not).

This theory looks at the total energy at failure and compares that with the total energy in a unixial test at failure.
Any elastic member under load acts like a spring and stores energy (Vallabhan, 1983). This is commonly called
distortational energy and can be calculated as:
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Figure.1.The area under the curve in the elastic region is called the Elastic Strain Energy
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Stress-strain relationship
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Define
Distortion strain energy = total strain energy — hydrostatic strain energy
Ud = UT - Uh
Uy = oA [(62 + 0%+ 02) — 2v (0,0, + 0,05 + 0,03)]

Substitute 01 = 02 = g3 = On
where

1
U, = 5 [(6?2 + o + 07) — 2v (0,0, + 00, + G,01)]

Simplify and substitute o1 + 02 + 03 = 30 into the above equation
0, + 0, + 03 =30
Then, Equation become

30} (0, + 0, + 03)?(1 —2v)
Uh—ﬁ(l—ZU)— 6E
Subtract the hydrostatic strain energy from the total energy to obtain the distortion energy
(1+v)
Upg=Ur—U,= 6F [(oy = 02)* + (0, — 03)* + (0, — 03)?]

Numerical implementation

In this paper, finite difference method (FDM) was used to obtain solutions for analysis of thin rectangular flat
plates carrying distributed load with the following boundary conditions.
Rectangular plate sides AD and BC, simply supported sides AB and DC cantilever supported sides and plate is
loaded as in Figure 1 continuous load Po.

= (8

y
Figure 2. A rectangular plate with a continuous load.
In order to analyse plate FD methods udsed. First we sould guess two function in x and y directions and after

that boundary conditions must be suppose in this plate. For strat imagine that plate is square and the dimention of
both sides is a, in this case form function define as below:

X, = z Sin (?)

m=1
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In case of consider the first set of statements

W(xy) = Wosm( ") (Sl (?’))2

From Strain energy equation which stored in the plate
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Work done by the external forces are calculated as follows

w= J-J- (x,y) w(x, y)dxdy = JJ{ y +w, sin (ZX) (sin (g))z}dxdy _ az‘;,;l)o

can be minimized the potential function of plate to obtain the maximum deflection
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Finally, The deformation of the plate is as follows:

W(x,y) = <2(714D€:5> sin (?) (sin (?))2
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With the following values for the dimensions, numerical and analytical results will be compare

poisson's ratio 0.3 Length (cm) 100
continuous load (kg/ m?) 10000  Width (cm) 100
Yeild Strenght (strain) 2400 Thickness (cm) 1

Yeild Strenght 2400  modulus of elasticity (kg/ cm?) 2100000

. o Two sides simply supported and two sides cantilever supported
Safety Factor design 1.667  Support situation

The maximum deflection of plate In the middle of the plate from the last equation is as follows:

W (50.50) — 8(100)*(1) (S0 (om0,
(50,50) = 27((2.1 x 106)) } n(ﬁ) m (W) - oot am
12(1-03))"

Table 1. numerical and analytical deflections with different mesh size
Mesh size  numerical deflection  analytical deflection  Error percent

10 0.527663 0.503478 - 4.803586254
12 0.519066 0.503478 - 3.09606378
14 0.513746 0.503478 - 2.039413837
16 0.511844 0.503478 -1.661641621
20 0.509534 0.503478 -1.202833093
24 0.507886 0.503478 - 0.875509953
26 0.507231 0.503478 - 0.745414894
28 0.506659 0.503478 - 0.632003782
30 0.506158 0.503478 - 0.532297341
32 0.505713 0.503478 - 0.443912147
34 0.505317 0.503478 - 0.365259257
36 0.504962 0.503478 -0.294749721
40 0.504351 0.503478 -0.173393872
42 0.504056 0.503478 - 0.120759993
44 0.503844 0.503478 - 0.072694338
46 0.503734 0.503478 - 0.050846313
48 0.503741 0.503478 - 0.052236642
50 0.503729 0.503478 - 0.049853221
54 0.503669 0.503478 - 0.037737498
58 0.503572 0.503478 -0.018670131
60 0.503516 0.503478 - 0.0075475
62 0.503453 0.503478 - 0.004369605
64 0.503394 0.503478 - 0.016683946
66 0.50333 0.503478 - 0.029395525
70 0.5032 0.503478 - 0.055215918
78 0.503046 0.503478 - 0.085803153
80 0.503056 0.503478 - 0.083816969
90 0.503024 0.503478 -0.090172758
100 0.502912 0.503478 -0.11241802
120 0.502851 0.503478 - 0.124533743
140 0.502757 0.503478 -0.14124769
160 0.502746 0.503478 - 0.145984532
180 0.502728 0.503478 - 0.148963808
200 0.502696 0.503478 - 0.155319597
250 0.502677 0.503478 - 0.159093347
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Figure 3. Mesh sensitivity

Figure 5. xy- Axise shear stress countors (T, )
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Figure 6. Stress function graph
CONCULSION

Given the difficulty and long analytical solution of the plate equations in some specific issues, using numerical
methods is always a good practice, provided that the authenticity and accuracy of these methods can be evaluated
and selecting optimized steps for iteration, both save time during the analysis of problems and get appropriate and
acceptable accuracy. Finite difference method as one of the existing numerical methods is relatively strong method
for numerical solution of the plate equations with different loading and support solutions conditions. As observed,
increasing repeat steps in finite difference method does not result in increased attention to the problem and may
also act in the opposite way.
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